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Abs t r ac t -Unmeasu red  process variables or parameters caused by cost consideration or technical infeasibility can 
be mostly estimated using data reconciliation techniques. Since, however, the gross errors possibly present in the 
process measurements deteriorate the data reconciliation results, the reconciled estimates may be biased solutions 
that are different from the true values. In this paper, the enhanced data reconciliation and gross error detection 
method, modified MIMT using NLP, was applied to a flash distillation system. It calculated the reconciled values 
of the measurements as well as the optimal estimates of stage efficiencies which were not measured. These techniques 
using NLP showed the robustness when compared to the conventional algorithms using linearization techniques. 
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INTRODUCTION 

Accurate process models are required for the optimization and 
control in chemical plants and petrochemical manufacturing facil- 
ities. Theses models involve various equipment parameters, such 
as stage efficiencies in distillation columns, the values of which 
must be determined by fitting the models to process data. But 
process measurements  contain random errors or possibly gross 

errors. Random errors are normally distributed with zero means 
and known covariance matrix and gross errors may result from 
sources such as unsuspected leak, miss calibration of the meas- 
urement device, and malfunctioning sensors. Since lhese incon- 
sistent data therefore do not satisfy the physical constraints of 
the process, such as material and energy balances, the reliability 
of the data is greatly reduced. In the case of estimating the stage 
efficiency and parameters of measurement using these inconsist- 
ent measured data, the computed estimates are biased which are 
different from true values. The problem thus involves parameter 
estimation coupled with gross error detection and data reconcilia- 
tion. 

Until now the above problems are solved via the method based 
on linearization techniques to compute the optimal estimates of 
unmeasured variables and parameters in processes. The perfor- 
mance of these linearization techniques is considerably reduced 

as the nonlinearity of model and the number  of gross error in 
the measurement  data are increased. But when the enhanced data 
reconciliation and gross error detection by modified MIMT using 
NLP was applied to a CSTR system, the performance of the en- 
hanced algorithm was superior to the method using linearization 
techniques [Kim et al., 1995]. 

Thus, in this work, the enhanced data reconciliation and gross 
error detection algorithm using NLP is applied to estimate the 
stage efficiency of a flash distillation system which was; considered 
by Sertb et al. E1993], and the performance of the proposed algo- 
rithm is compared to that of the conventional method. 

tTo whom all correspondences should be addressed. 

PROBLEM STATEMENTS 

In the past 30 years, the data reconciliation and gross error 
detection of steady state processes has received considerable at- 
tention in chemical engineering literature [Terry  and Himmelb- 
lau, 1993]. A number  of methods for detecting and identifying 
gross errors in linearly constrained data have been developed, 
most of which involve the use of statistical tests based on the 

assumption that the random errors in the data are normally distri- 
buted. In one of the simplest methods, the set of residuals from 
the least-squares procedure is tested for outliers, and any meas- 
urement for which the corresponding residual fails the test is 
considered to contain a gross error. This data reconciliation and 
gross error detection algorithm has been advocated by several 
investigators including Ripps E1965], Hogg and Tanis [1977], 
Knepper and Gorman [1980], Iordache et al. E1985], Tamhane 
and Mah [1985], Crowe [-1986], Serth and Heenan E1986], Rose- 
nberg et al. E1987], and Kao et al. [1990], and its performances 
have been studied on a number  of problems by Iordache et al. 
F1985] and Serth and Heenan [1986]. 

In the case of not all the variables are measured, the objective 
function for data reconciliation can be written as 

1 1 ( z . - z )  

s.t. ffz, 0)=0 

where 0 represents the estimates of unmeasured variables or 
parameters. The solutions of this objective function give the re- 
conciled data, z, satisfying the process model and the optimal 
estimates of unmeasured variables, 0. The above data reconcilia- 
tion problem can be solved by linearization techniques and nonlin- 
ear programming techniques. The solution technique using NLP 

has the advantage that it explicitly handles nonlinear constraints 
and specifies the upper and lower bounds on the optimal solution. 
Therefore this technique can compute the robust optimal solution 
regardless of the nonlinearity of the process and the number  of 
gross errors in the measurement FKim et al., 1995]. 
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Fig. 1. Flash distillation system. 

In the data reconciliation described above, it is assumed that 
no gross errors were present in the measurements.  When the 
gross errors are present in the measurements,  the gross error 
detection must be preceded before the data reconciliation aml 
the suspect measurement  variables are identified and corrected. 
In the MIMT, the gross error detection algorithm proposed by 
Serth and Heenan [1986], at each stage the residuals are tested 
for outliers, and the measurement corresponding to the most sig- 
nificant residuals is deleted from the set of measured variables 
and estimated. The iterations are terminated when all remaining 
residuals satisfy the test for outliers. In a comparative study of 
a number  of gross error detection algorithms, this method was 
found to represent  the best combination of robust and effective- 
ness. In this work the modified MIMT algorithm using NLP, pro- 
posed by Kim et al. E1995], was used for the gross error detec- 

tion. 
In order to estimate the suspected variable including the gross 

error, we can formulate another objective function similar to Eq. 

(1). 

1 
Min~-(z.' z') R' ~(z . ' -z ' )  (2) 

Z,w.0 

s.t. f(z', w, 0 ) - 0  

where z, '  are the measurement set in which a suspected meas- 
urement is deleted, and w is the estimate of the suspected vari- 
able in the measurements.  The objective function given in Eq. 
(2) can be solved by the methods based on linearization techni- 

ques and nonlinear programming techniques, which are same as 
the data reconciliation. When we incorporated the nonlinear pro- 
gramming techniques into the gross error detection algorithm and 
applied to a CSTR system, this enhanced algorithm could giw; 

the robust solution regardless of the nonlinearity of model and 
the number  of gross errors in the measurement  [Kim et al., 

1995]. 

S IMULATION E X A M P L E  

1. Flash Dist i l lat ion S y s t e m  
A non-adiabatic, non-equilibrium single-stage flash system con- 

sidered by Serth et al. E1993] is shown in Fig. 1. ["or a feed 
containing C components, the mesh equations for the system are 
listed in Table I in terms of the vaporization efficiency. Though 
many efficiency equations can be written using other definitions 
of stage efficiency, two fundamental models, Vaporization efficien- 
cy and Modified Murphree efficiency (based on mole fraction), 

Table 1. Mesh equation for a flash distillation using vaporization effi- 
ciency 

Type Equation Number 
Material Balance Fz~ - Lx, - Vy, = 0 C 
Efficiency y, - 0,~K,x, = 0 C 
Sum of Mole Fractions Z ,x , -1 .0=0  3 

Y',yi 1.0 = 0 
E~z, - 1.0 = 0 

Enthalpy Balance F + Q - HL -- H,,V = 0 1 
Total 2C + 4 

Table 2. Specification for example problem 

Variable Value 
F 0.454 kmol/s 
z~ 0.15 
zz 0.35 
z:~ 0.30 
TF 316.7 K 
Pv 3,447.4 kPa 
P 1,723.7 kPa 

Q 2,108.4 kJ/s 

are considered and compared in this work. 

Vaporization Efficiency : 0, v= y,/K,x, (4) 

Modified Murphree : 0, MM= y , -x ,  
FLx,- x, (5) 

For simulation purposes, a feed containing four components 

[(1) ethane, (2) propane, (3) propylene, and (4) isobutene] was 
selected. Specifications for the example problem are given in Ta- 

ble 2. For given values of the component efficiencies, 9, the values 
of the remaining process variables IT, L, V, x, Yi ( i=  1,2,3,4) and 
z4] were determined implicitly by the mesh equations. The ther- 
modynamic relations given by +Iolland [-1981] were used for en- 
thalpies and K values. It should be noted that these K values 
are independent of composition. 
2. S imulat ion  Procedure 

The performance of data reconciliation and gross error detec- 
tion algorithms were tested via 100 computer simulation runs. 
For each simulation run, a measurement  vector was constructed 

a s  

z , , , = x + ~ + 8  (6) 

where x is the original value, ~ is the vector of random measure- 
ment errors, and 8 is the vector of systematic errors. The true 
values of the process variables were obtained by solving the mesh 
equations subject to the constraints given in Table 2 and specified 
values of component efficiencies. For simplicity, all component 
efficiencies were assumed equal, so that a single-state efficiency 
characterized the flash. The calculations were performed for an 
efficiency of 75% only. A Gaussian pseudo-random number  gen- 
erator was first used to generate ~. For the purpose of these 
experiments, the relative standard deviation of temperature was 
taken to be 0.4% for temperatures, and 2.5% for flow rates, mole 
fractions and heat flow. Random errors were assumed to be stati- 
stically independent so that all covariance terms were zero. After 
generation of the random error vector, a uniform pseudo random 
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number generator was used to define the number, position, mag- 

nitude and algebraic sign of the non-zero systematic errors. The 
number of non-zero systematic errors was allowed to vary bet- 

ween one and three, while the range of systematic errors magni- 

tudes (as a percentage of true values) used was 2% to 10% for 
temperatures and 10% to 100% for other variables. Pressure meas- 

urements were assumed to be exact since pressure effects are 

small in this system [-Serth et al., 1993]. 
For the purpose of application of the MIMT algorithm, the criti- 

cal test value z~ was computed as follow. For a=0.05 (z~2 = 1.96), 

we have 13=0.0028, and z~ ~z2=2.98. For the gross error detection 

algorithm, the lower bounds on the variables are set to 0.05 times 
the true value for stage efficiency and zero for other variables. 

The upper bounds on the variables were set at 3.0 times the 

true value for stage efficiency, and 4.0 times the other parameter 

values. For nonlinear programming, the lower and upper bounds 

of the optimal solution were set at 65% to 85% for the unmeas- 
ured stage efficiency and 0.8 and 1.2 times the corresponding 

true value for the other variables. 

3. Performance  Evaluat ion 
The performance of each algorithm was tested by the percen- 

tage reduction in total rms error in the data computed as follows 

[-Serth et al., 19873; 

Error Reduction = ~ • 100 (7) % Total 

El = X (z~j- Xi), ~ 
j 1 

j - I  

In these equations, E~ and E2 are initial and final rms (root mean 

square) errors; z,,, x, and ~* are the vectors of measured values, 

true values, and final reconciled values, respectively; and the sub- 

s c r i p t ' s '  indicates that scaled values of the variables are employ- 

ed. 

R ESULTS AND DISCUSSION 

For the tests, the random and gross errors were added to 18 
variables of the flash system by Eq. (6), and the 100 measurement 

data sets were obtained by simulation. The same seed was used 

in the random number generator in order to give the same meas- 

urement set of test cases. The true value of the stage efficiency 

was set at 75%. 
In the discussion, the abbreviated names of the algorithms are 

used: data reconciliation techniques using the linearization tech- 

nique (DR/SL) and the nonlinear programming technique (DR/ 
NLP); gross error detection algorithms using the linearization 

technique (GED/SL) and using the nonlinear programming tech- 

nique (GED/NLP). 
The results for the four methods are summarized in Table 3 

for The modified Murphree efficiency model as a function of the 

number of gross errors. The data reconciliation results of both 
DR/SL and DR/NLP, shown in the lower part of Table 3, are 

similar when the measurements were not corrupted by gross er- 
rors. However the performance differences of the two data recon- 

ciliation techniques become wider as the number of gross errors 

was increased. When the data were corrupted by three gross er- 
rors, the average value of stage efficiencies, estimated by DR/SL, 
is 70.14%, which is considerably different from the true value. 

The maximum and minimum values of stage efficienc} were 121.1 

Table 3. Performance results for modified Murphree efficiency model 
with one-sided systematic errors 

Gross Error Detection 

Number of 
gross errors 

GED/SL GED/NLP 

0 1 2 3 0 1 2 3 
Error reduction % 38.3 71.8 74 .9  61.7 38.2 76.1 72.7 77.4 

Efficiency % 
Mean 75.1 74.8 74.3  72.9 75.1 74.9 75.2 75.0 

STD 2.3 2.8 6.5 11.6 2.3 2.6 2.9 3.7 

Max 82.7 82.7 83.9 113.5 82.7 82.7 83.4 84.2 

Min 70.1 61.2 34.3 0 70,1 65.6 66.1 65.0 

Data Reconciliation 
Number of DR/SL DR/NLP 

gross errors 0 1 2 3 0 1 2 3 
Efficiency % 

Mean 75.0 74.9  74.6 70.1 75.0 74.8 75.2 74.3 

STD 2.2 9.2 14.5 20.9 2.2 5.4 7.0 7.7 
Max 79.8 100.3 109.1 121.1 79.8 85.0 85.0 85.0 

Min 70.1 43,6 28.9 0 70.1 65.0 65.0 65.0 
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Fig. 2. Histograms of the stage efficiency estimates by DR/SL and 
DR/NLP for modified Murphree efficiency model. 

% and 0% respectively, which is inconsistent with real processes. 

For DR/NLP, however, the maximum and minimum values of 
the stage efficiency were 85% and 65% respectively, which are 

the specified inequality constraints in NLP. 
The histograms for 100 stage efficiency estimates by the two 

data reconciliation methods with three gross errors are shown 
in Fig. 2. The estimates by DR/SL are scattered widely and there 

exists several biased estimates. While the estimates by DR/NLP 

are scattered between the specified bounds of 85% and 65%, most 
estimates are located near the bounds. Therefore the optimal esti- 

mates of the unmeasured variable (stage efficiency) cannot be 
computed correctly by the data reconciliation techniques when 

the data are corrupted with many gross errors. Hence the gross 
error detection step must be performed before data reconciliation, 

and the suspected measurement variables with gross errors 

should be identified and corrected. 
The results from the gross error detection algorithms are pre- 

sented in the upper rows of Table 3. Similar to the data reconcil- 
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Fig. 3. Histograms of the stage efficiency estimates by GED/SL and 
GED/NLP for modified Murphree efficiency model. 

10o 

Fig. 4. Histograms of the stage efficiency estimates by GED/SL for 
different systematic error types. 

Table 4. Performance results for vaporization efficiency model with 
two-sided systematic errors 

Gross Error Detection 
Number of 

gross errors 

Table 5. Performance results for vaporization efficiency model with 
one-sided systematic errors 

Error reduction % 39.6 76.9 77.5 67.7 39.6 79.0 83.4 81.0 

Gross Error Detection 

GED/SL GED/NLP GED/SL GED/NLP Number of 

1 2 3 0 1 2 3 gross errors 0 1 2 3 0 1 2 3 

Error reduction % 39.6 74.9 73.0 58.6 39.6 75.1 77.2 77.5 
Efficiency ~ Efficiency % 

Mean 75.1 75.3 74.7 74.2 75.1 75.2 74.9 75.0 Mean 75.1 75.3 74.7 73.3 75.1 75.1 75.2 74.8 

STD 1.2 1.9 2.9 7.1 1.2 1.6 2.2 2.9 STD 1.2 1.3 4.3 5.9 1.2 1.3 2.5 3.6 

Max 77.7 85.8 83.6 99.2 77.7 82.4 84.5 83.4 Max 77.7 78.4 90.6 82.9 77.7 78.4 85.0 84.5 

Min 70.8 70.8 53.3 31.2 70.8 70.8 67.2 65.4 Min 70.8 70.8 42.6 54.6 70.8 70.8 65.0 65.0 

Data Reconciliation 
Number of DR/SL DR/NLP Number of 

gross errors 0 I 2 3 0 1 2 3 gross errors 

Data Reconciliation 
DR/SL 

0 1 2 

Efficiency % Efficiency % 

Mean 75.0 75.9 76.2 75.3 75.0 75.3 75.1 75.3 Mean 75.0 74.4 
STD 1.2 7.7 9.6 8.8 1.2 3.6 4.9 5.1 STD 1.2 4.3 

Max 77.7 118.1 118.6 117.8 77.7 85.0 85.0 85.0 Max 77.7 81.3 
Min 70.8 55.9  55.8 43.4 70.8 65.0 65.0 65.0 Min 70.8 52.4 

DR/NLP 
3 0 1 2 3 

73.8 70.6 75.0 74.8 74.5 72.4 

6.7 8.0 1.2 3.1 4.6 5.6 
89.7 86.6 77.7 81.4 85.0 85.0 

52.9 51.0 70.8 65.0 65.0 65.0 

iation results, the performances of GEI)/SL, such as power, av- 
erage error reduction percentage, and maximum and minimum 

efficiencies, deteriorate as the number of gross errors is increased 
from one to three. In the case of GED/NLP, however, even though 

the measurements were corrupted by three gross errors, the pow- 
er of the algorithm is still 0.92. The value of average stage efficien- 

cy is 74.97%, which is close to the true value of stage efficien- 
cy, and the standard deviation of the efficiency distribution is 

3.7%, which is narrower than that for GED/SL (11.6%). 
The histograms of the stage efficiencies computed by the gross 

error detection algorithms for three gross errors are shown in 
Fig. 3. The outliers shown in the histogram of GED/SL indicates 

that the gross errors in the measurements cannot be correctly 

identified and estimated by GED/SL. For GED/NLP, however, 

most of the suspected variables are corrected, resulting in an 
optimal estimate of stage efficiency which is close to the true 

value. 

In order to investigate the robustness of the data reconciliation 

and gross error detection algorithms to systematic errors, the 

data were corrupted by one-sided and two-sided systematic errors 
in all variables. The gross errors were only subtracted from the 

random data for the one-sided data, and were subtracted and 
added randomly for the two-sided data. The results for the two- 

sided systematic errors are presented in Table 4 and those for 
the one-sided systematic errors are summarized in Table 5. In 
general, the results for the two-sided errors are better than those 

with the one-sided errors, based on the averaged values shown 

in the tables. In the case of GED/NLP, the estimates with one 
-sided errors are not much worse than those with two-sided er- 

rors. The histograms of the estimates by GED/SL for the differ- 
ent types of data are different as shown in Fig. 4. In contrast 

the histograms obtained by GED/NLP, shown in Fig. 5, have simi- 
lar distributions, with most estimates around the true value of 

stage efficiency, 75%. 
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Fig. 5. Histograms of the stage efficiency estimates by GED/NLP for 
different systematic error types. 
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In order to assess the robustness of the methods to the model 
forms, two different efficiency models (Vaporization and Modified 
Murphree model) were tested and the results are summarized 
in Tables 3 and 5. The GED/SL shows quite; different perfor- 
mance with different stage efficiency models. The most striking 
differences in the results of GED/SL and DR/SL are that the 
values of maximum and minimum stage efficiency are over 100% 
for Vaporization model, which are not realistic values for a real 
process. In the case of GED/NLP, however, little distinction is 
noted between the resuRs of two models. In (;ED/SL, the histo- 
grams in Fig. 6 show that there are more outliers in the estimates 

with the Murphree  model. However, the results of GED/NLP 
in Fig. 7 show both distributions in the vicinity of the true stage 
efficiency, even though the efficiency models are different. 

CONCLUSION 

Two data reconciliation and gross error detection methods were 
tested to estimate the unmeasured stage efficiency in a flash dis- 
tillation column. Compared to the conventional methods, the mo- 
dified MIMT using NAP showed consistent performance regard- 
less of the number  of gross errors, the type of systematic errors 
and the stage efficiency models. 

We believe optimal estimates of measured variables and un- 
measured variable or parameters can be computed using the 
enhanced data reconciliation and gross error detection algorithm 
using NLP for a variety of chemical engineering processes. 
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Fig. 6. Histograms of the stage efficiency estimates by GED/SL for 
different efficiency models. 
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Fig. 7. Histograms of the stage efficiency estimates by GED/NLP for 
different efficiency models. 
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N O ME N CL A T U RE  

C :number  of components 
F :feed flow rate [kmo]/s]  
H : enthalpy [kJ/kmol] 
K : K value 
L :liquid flow rate [kmol/s]  
P : p r e s s u r e  [kPa ]  

Q :hea t  rate [M/s ]  
R : covariance matrix of measurement  errors 

T : temperature [K] 
V :vapor flow rate ~kmol/s] 
w :est imate of suspected variables 

x :liquid mole fraction 
y :vapor mole fraction 
x :vector  of 1rue measurement  
z : reconciled data 
ig,' :compressed measurement data set deleted from suspected 

variable 

Superscr ipts  
MM :modified Murphree efficiency 
V : vaporization efficiency 

Subscr ipts  
F : feed stream 
i : component index 

Korean J. Ch. E.(Vol. 13, No. 2) 
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:general variable index 
: liquid stream 
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